Genetic Algorithm Applications in Wireless Sensor Networks (WSN): A Review
Author(s)
Dil Nawaz Hakro , Intzar Ali Lashari , Maryam Bibi , Shauban Ali Solangi , Khalil-ur-Rehman Khoumbati , Zulfiqar Ali Bhutto ,
Download Full PDF Pages: 152-166 | Views: 348 | Downloads: 97 | DOI: 10.5281/zenodo.3470631
Abstract
Wireless Sensor Networks (WSN) has been remained most demanding field due to its application-specific characteristics. There are various applications for WSN and among them some well-known application parameters are energy consumption and life-span longevity for the sake of routing. Genetic Algorithm is a robust optimization technique and possesses the large-scale computational applications. This paper is an attempt to survey of all operational phases of a WSN namely, quality of service (QoS) in routing, clustering, network coverage and localization as well multiple sinks. Additionally, the paper also discusses Genetic Algorithm applications.
Keywords
Genetic Algorithm, Wireless, Sensor Networks, (WSN)
References
- Abdala, M., Abdala, M. A., Hassan, R. H., & Abd, A. J. (2016). Homogeneous sensor deployment in WSN using PSO algorithm Homogeneous sensor deployment in WSN using PSO algorithm, (March), 1–8.
- Abirami, T., & Anandamurugan, S. (2016). Data Aggregation in Wireless Sensor Network Using Shuffled Frog Algorithm. Wireless Personal Communications, 90(2), 537–549.
- Aboelaze, M., & Aloul, F. (2005, March). Current and future trends in sensor networks: a survey. In Second IFIP International Conference on Wireless and Optical Communications Networks, 2005. WOCN 2005. (pp. 551-555). IEEE.
- Abo-zahhad, M., Ahmed, S. M., & Sabor, N. (2014). A New EnergyEfficient Adaptive Clustering Protocol Based on Genetic Algorithm for Improving the Lifetime and the Stable Period of Wireless Sensor Networks. International Journal of Energy, Information and Communications, 5(3), 47–72.
- Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.
- Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.
- Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351–367.
- Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.
- Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.
- Alba, E., & Troya, J. M. (1999). A survey of parallel distributed genetic algorithms. Complexity, 4(4), 31–52.
- Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E. J., & Wrembel, R. (Eds.). (2015). Computer Science and Its Applications: 5th IFIP TC 5 International Conference, CIIA 2015, Saida, Algeria, May 20-21, 2015, Proceedings (Vol. 456). Springer.
- Ayaz, B., Allen, A., & Wiercigroch, M. (2014). Dynamically Reconfigurable Routing Protocol Design for Underwater Wireless Sensor Network. Eighth International Conference on Sensing Technology, (SEPTEMBER), 2–4.
- Aziz, L., Raghay, S., Aznaoui, H., & Jamali, A. (2016, March). A new approach based on a genetic algorithm and an agent cluster head to optimize energy in Wireless Sensor Networks. In 2016 International Conference on Information Technology for Organizations Development (IT4OD) (pp. 1-5). IEEE.
- Bahşi, H., & Levi, A. (2009). Energy efficient privacy preserved data gathering in wireless sensor networks having multiple sinks. Proceedings of the 2009 2nd International Conference on Computer Science and Its Applications, CSA 2009.
- Balwinder, M., & Dhir, K. (2015). A Survey on Fault Tolerant Multipath Routing Protocols in Wireless Sensor Networks, 15(3).
- Baranidharan, B., & Santhi, B. (2015). GAECH : Genetic Algorithm Based Energy Efficient Clustering Hierarchy in Wireless Sensor Networks, 2015.
- Bari, A., Wazed, S., Jaekel, A., & Bandyopadhyay, S. (2009). A genetic algorithm based approach for energy efficient routing in twotiered sensor networks. Ad Hoc Networks, 7(4), 665–676.
- Basagni, S., Carosi, A., Petrioli, C., & Phillips, C. A. (2009). Heuristics for lifetime maximization in wireless sensor networks with multiple mobile sinks. IEEE International Conference on Communications, (October 2016).
- Ben-othman, J., & Yahya, B. (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. J. Parallel Distrib. Comput., 70(8), 849–857.
- Bhondekar, A. P., Vig, R., Singla, M. L., Ghanshyam, C., & Kapur, P. (2009). Genetic Algorithm Based Node Placement Methodology For Wireless Sensor Networks. Proceedings of the International MultiConference of Engineers and Computer Scientists, I, 7.
- Boler, C., Yenduri, S., Ding, W., Perkins, L., & Harris, J. (2011). To Shift or not To Shift: Maximizing the Efficiency of A Wireless Sensor Network. International Journal of Networked Computing and Advanced Information Management, 1(1), 66–74.
- Cai, W., Chen, M., Hara, T., & Shu, L. (2010, March). GA-MIP: genetic algorithm based multiple mobile agents itinerary planning in wireless sensor networks. In Wireless Internet Conference (WICON), 2010 The 5th Annual ICST (pp. 1-8). IEEE.
- Chatterjee, P. (2015). Multiple Sink Deployment in Multi-Hop Wireless Sensor Networks to Enhance Lifetime.
- Chen, D., & Varshney, P. K. (2004). QoS Support in Wireless Sensor Networks: A Survey. International Conference on Wireless Networks, (ICWN ’04), Las Vegas, 13244, 227–233.
- Chen, M., Kwon, T., Yuan, Y., Choi, Y., & Leung, V. (2007). Mobile agent-based directed diffusion in wireless sensor networks. EURASIP Journal on Applied Signal Processing, 2007(1), 219-219.
- Deb, K., Member, A., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm :, 6(2), 182–197.
- Deif, D. S., & Gadallah, Y. (2014, April). Wireless Sensor Network deployment using a variable-length genetic algorithm. In 2014 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2450-2455). IEEE.
- Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.
- Ebrahimian, N., Sheramin, G. Y., Navin, A. H., & Foruzandeh, Z. (2010, November). A novel approach for efficient K-coverage in wireless sensor networks by using genetic algorithm. In Computational Intelligence and Communication Networks (CICN), 2010 International Conference on (pp. 372-376). IEEE.
- Egorova-f, A., & Murphy, A. L. (2016). F ROMS : Applying the Feedback Routing Framework for Optimizing Multiple Sinks in WSN. Work, (July 2011).
- Ehsan, S., & Hamdaoui, B. (2012). A Survey on Energy-Ef fi cient Routing Techniques with QoS Assurances for Wireless Multimedia Sensor Networks. IEEE Communications Surveys & Tutorials, 14(2), 265–278.
- EkbataniFard, G., Monsefi, R., Akbarzadeh-T, M.-R., & Yaghmaee, M. H. (2010). A multi-objective genetic algorithm based approach for energy efficient QoS-routing in two-tiered Wireless Sensor Networks. Proceedings of the IEEE 5th International Symposium on Wireless Pervasive Computing (ISWPC), (pp. 80-85). IEEE.
- Elhoseny, M., Elleithy, K., Elminir, H., Yuan, X., & Riad, A. (2015). Dynamic Clustering of Heterogeneous Wireless Sensor Networks using a Genetic Algorithm, Towards Balancing Energy Exhaustion, (AUGUST).
- Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H. K., & Riad, A. M. (2015). Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Communications Letters, 19(12), 2194–2197.
- Elnaggar, O. E., Ramadan, R. A., & Fayek, M. B. (2015). WSN in Monitoring Oil Pipelines Using ACO and GA. Procedia Computer Science, 52(Wntest), 1198–1205.
- Enan, A. A., & Suat, A. K. (2015). A Multi-objective Disjoint Set Covers for Reliable Lifetime Maximization of Wireless Sensor Networks, 819–838.
- Eris, C., Saimler, M., Gungor, V. C., Fadel, E., & Akyildiz, I. F. (2014). Lifetime analysis of wireless sensor nodes in different smart grid environments. Wireless Networks, 20(7), 2053–2062.
- Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Abbas Malik, M. G., Almasri, S., & Akyildiz, I. F. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.
- Farooq, M. O., Dogar, A. B., & Shah, G. A. (2010). MR-LEACH: Multi-hop routing with low energy adaptive clustering hierarchy. Proceedings - 4th International Conference on Sensor Technologies and Applications, SENSORCOMM 2010, 262–268.
- Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031–1051.
- Ferentinos, K. P., & Tsiligiridis, T. A. (2010). A memetic algorithm for optimal dynamic design of wireless sensor networks. Computer Communications, 33(2), 250–258. Ferentinos, K. P., & Tsiligiridis, T. A. (2010). A memetic algorithm for optimal dynamic design of wireless sensor networks. Computer Communications, 33(2), 250–258.
- Gao, S., Zhang, H., Das, S. K., & Member, S. (2011). Efficient Data Collection in Wireless Sensor Networks with Path-Constrained Mobile Sinks, 10(5), 592–608.
- Ghelardoni, L., Ghio, A., Anguita, D., & Member, S. (2012). Smart Underwater Wireless Sensor Networks. 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, (August 2015), 1–5.
- Ghosh, S., Snigdh, I., & Singh, A. (2016). GA optimal Sink Placement for Maximizing Coverage in Wireless Sensor Networks, 737–741.
- Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm for kconnected relay node placement in wireless sensor networks. Advances in Intelligent Systems and Computing, 379(March 2016), 721–729.
- Gupta, T. (2015). IMPLEMENTATION OF AN OPTIMIZATION TECHNIQUE : GENETIC ALGORITHM, 4(12), 4359–4364.
- Hassan, M. M., Ramadan, R. A., & Boghdadi, H. M. El. (2014). Finding the best sink location in wsns with reliability route analysis. Procedia Computer Science, 32, 1160–1167.
- Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 0(c), 3005–3014.
- Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic algorithm for hierarchical wireless sensor networks. Journal of Networks, 2(5), 87– 97.
- Jain, T. K., Saini, D. S., & Bhooshan, S. V. (2014). Increasing lifetime of a wireless sensor network using multiple sinks. ITNG 2014 - Proceedings of the 11th International Conference on Information Technology: New Generations, 8–11.
- Jain, T. K., Saini, D. S., & Bhooshan, S. V. (2015). Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing, 2015(1).
- Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multiobjective genetic algorithm. Computers and Mathematics with Applications, 57(11–12), 1756–1766.
- Jin, S., Zhou, M., & Wu, A. S. (2003, July). Sensor network optimization using a genetic algorithm. In Proceedings of the 7th world multiconference on systemics, cybernetics and informatics (pp. 109-116).
- Karunarathne, L. P., Leeson, M. S., & Hines, E. L. (2014). Evolutionary minimization of network coding resources. Applied Artificial Intelligence, 28(9), 837–858.
- Kaur, A. (2016). Energy efficient Clustering Techniques using Genetic Algorithm in Wireless Sensor Network : A Survey, 2(9), 200–203.
- Khan, F. H., Shams, R., Umair, M., & Waseem, M. (2012). Deployment of Sensors to Optimize the Network Coverage Using Genetic Algorithm. SSU Res .J. ofEngg. & Tech, 2(1), 8–11.
- Khan, I., Sahoo, J., Han, S., & Glitho, R. (2016). A Genetic Algorithm-based Solution for Efficient In-network Sensor Data Annotation in Virtualized Wireless Sensor Networks, 1–2.
- Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12(OCTOBER), 48–56.
- Kundu, P., Paul, V., Kumar, V., & Mishra, I. M. (2016). An adaptive modeling of petroleum emulsion formation and stability by a heuristic multiobjective artificial neural network-genetic algorithm. Petroleum Science and Technology, 34(4), 350–358.
- Li, B. B., & Wang, L. (2007). A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(3), 576-591.
- Li, M. (2015). An Adaptive Quantum Genetic QoS Routing Algorithm for Wireless Sensor Networks, 1426–1430.
- Liu, J.-L., & Ravishankar, C. V. (2011). LEACH-GA: Genetic Algorithm-BasedEnergy-Efficient Adaptive Clustering Protocolfor Wireless Sensor Networks. International Journal of Machine Learning and Computing, (January 2011), 79–85.
Liu, W., & Wu, Y. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3(2), 112–118. - Lu, M. W., & Chan, C. W. (2012). Tracking of multiple objects in WSN based on prediction-based profile using GA. 2012 3rd International Conference on Computing, Communication and Networking Technologies, ICCCNT 2012, (July).
- Luo, W. (2010). A quantum genetic algorithm based QoS routing protocol for wireless sensor networks. 2010 IEEE International Conference on Software Engineering and Service Sciences, 37–40.
- M, S. Parvez & Divya, H.M. (2015). ENERGY EFFFICIENT CACHE NODE PLACEMENT USING GENETIC ALGORITHM &, 915–920.
- Magaia, N., Horta, N., Neves, R., Rogério, P., & Correia, M. (2015). A multi-objective routing algorithm for Wireless Multimedia Sensor Networks. Applied Soft Computing Journal, 30, 104–112.
- Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15(3), 189–199.
- Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: A variant of LEACH for WSNs. Proceedings - 2013 8th International Conference on Broadband, Wireless Computing, Communication and Applications, BWCCA 2013, 158–163.
- Mehboob, U., Qadir, J., Ali, S., & Vasilakos, A. (2014). Genetic algorithms in wireless networking: techniques, applications, and issues. Soft Computing, 1–35.
- MEMON, M. A., MEMON, S., BHATTI, Z., KHOWAJA, S. A., & BALOCH, B. (2015). Autonomous Robot Path Planning Using Particle Swarm Optimization in Static and Obstacle Environment. Sindh University Research Journal - SURJ (Science Series), 47(4).
- Mini, S., Udgata, S. K., & Sabat, S. L. (2012). -Connected Coverage Problem in Wireless Sensor Networks. ISRN Sensor Networks, 2012, 1–9.
- Mnasri, S. (2015). A genetic algorithm-based approach to optimize the coverage and the localization in the wireless audio-sensors networks A genetic algorithm-based approach to optimize the coverage and the localization in the wireless audio- sensors networks, (MAY).
- Murugeswari, R., Radhakrishnan, S., & Devaraj, D. (2016). A multiobjective evolutionary algorithm based QoS routing in wireless mesh networks. Applied Soft Computing Journal, 40, 517–525.
- Nazir, B., & Hasbullah, H. (2013). Energy efficient and QoS aware routing protocol for Clustered Wireless Sensor Network q. Computers and Electrical Engineering, 39(8), 2425–2441.
- Nie, J., Li, D., Han, Y., & Xie, S. (2010). The optimized method of cluster-head deployment based on GA-WCA in Wireless Sensor Networks. ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings, 12(Iccasm), 449–452.
- Norouzi, A., & Zaim, a H. (2014). Genetic algorithm application in optimization of wireless sensor networks. TheScientificWorldJournal, 2014(FEBRUARY), 286575.
- Oyman, E. I., & Ersoy, C. (2004). Multiple Sink Network Design Problem in Large Scale Wireless Sensor Networks. IEEE Communications Society, 0(c), 3663–3667.
- Ozkan, O., & Ermis, M. (2015). Nature-inspired relay node placement heuristics for wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 28(6), 2801–2809.
- Panousopoulou, A., Azkune, M., & Tsakalides, P. (2016). Feature selection for performance characterization in multi-hop wireless sensor networks. Ad Hoc Networks, 49, 70–89.
- Philipose, A., & A, Rajesh (2016). Investigation on energy efficient sensor node placement in railway systems. Engineering Science and Technology, an International Journal, 19(2), 754–768.
- Pinto, A. R., & Montez, C. (2010). Autonomic approaches for enhancing communication QoS in dense Wireless Sensor Networks with real time requirements. Proceedings - International Test Conference, 1–10.
- Poe, W. Y., & Schmitt, J. B. (2008). Placing Multiple Sinks in TimeSensitive Wireless Sensor Networks using a Genetic Algorithm, (2), 1–15.
- Polastre, J., Szewczyk, R., Mainwaring, A., Culler, D., & Anderson, J. (2004). Chapter 18 ANALYSIS OF WIRELESS SENSOR NETWORKS FOR HABITAT MONITORING. Wireless Sensor Networks, 399–423.
- Potyrailo, R. A., Nagraj, N., Surman, C., Boudries, H., Lai, H., Slocik, J. M., … Naik, R. R. (2012). Wireless sensors and sensor networks for homeland security applications. Trends in Analytical Chemistry : TRAC, 40, 133–145.
- Qi, H., & Wang, F. (2001). Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks. Proceedings of the IEEE, 147-153.
- Rachedi, A., & Benslimane, A. (2016). Multi-objective optimization for security and QoS adaptation in Wireless Sensor Networks. 2016 IEEE International Conference on Communications, ICC 2016.
- Ramana Rao, M. V., & Adilakshmi, T. (2016). Optimized cluster with genetic swarm technique for wireless sensor networks. Indian Journal of Science and Technology, 9(17).
- Safa, H., El-hajj, W., & Zoubian, H. (2014). Journal of Network and Computer Applications A robust topology control solution for the sink placement problem in WSNs. Journal of Network and Computer Applications, 39, 70–82. http://doi.org/10.1016/j.jnca.2013.04.009
- Sahin, D., Cagri, V., Kocak, T., & Tuna, G. (2014). Ad Hoc Networks Quality-of-service differentiation in single-path and multipath routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60.
- SaiToh, A., Rahimi, R., & Nakahara, M. (2014). A quantum genetic algorithm with quantum crossover and mutation operations. Quantum information processing, 13(3), 737-755.
- Sengupta, S., Das, S., Nasir, M. D., & Panigrahi, B. K. (2013). Multiobjective node deployment in WSNs: In search of an optimal tradeoff among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.
- Shahi, B., Dahal, S., Mishra, A., Kumar, S. B. V., & Kumar, C. P. (2016). A Review Over Genetic Algorithm and Application of Wireless Network Systems. Procedia Computer Science, 78, 431– 438.
- Shakshuki, E. M., Malik, H., & Sheltami, T. (2014). WSN in cyber physical systems: Enhanced energy management routing approach using software agents. Future Generation Computer Systems, 31(1), 93–104.
- Sherly, J., & Prabhu, T. (2016). An Energy Efficient Routing Protocol based on the Combination of Genetic Algorithm and KMeansf Extending the Lifetime of Wsn ’ s, 2(2), 556–559.
- Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. J. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27.
- Srinivas, N., & Deb, K. (1995). Muilti-objective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221--248.
- Sudarshan, J. R. S. T. S. B. (2014). Energy-efficient cache node placement using genetic algorithm in wireless sensor networks. Soft Computing, 3145–3158.
- Tian He, Stankovic, J. A., Lu, C., & Abdelzaher, T. F. (2003). SPEED: a stateless protocol for real-time communication in sensor networks. 23rd International Conference on Distributed Computing Systems, 2003. Proceedings., 46–55.
- Tian, D., & Georganas, N. D. (2003). A node scheduling scheme for energy conservation in large wireless sensor networks. Wireless Communications and Mobile Computing, 3(2), 271-290.
- Tilak, S., Abu-Ghazaleh, N. B., & Heinzelman, W. (2002). A taxonomy of wireless micro-sensor network models. ACM SIGMOBILE Mobile Computing and Communications Review, 6(2), 28–36.
- Unaldi, N., & Temel, S. (2014). Wireless Sensor Deployment Method on 3D Environments to Maximize Quality of Coverage and Quality of Network Connectivity, II(October), 22–24.
- Vijayan & Kumar, (2016). Coverage and Lifetime Optimization of WSN using Evolutionary Algorithms and Collision Free Nearest Neighbour Assertion, (October).
- Vijayan, V. P., & Gopinathan, E. (2014). Improving network coverage and life-time in a cooperative wireless mobile sensor network. Proceedings - 2014 4th International Conference on Advances in Computing and Communications, ICACC 2014, 42–45.
- Vincze, Z., Vida, R., & Vidács, A. (2007). Deploying multiple sinks in multi-hop wireless sensor networks. 2007 IEEE International Conference on Pervasive Services, ICPS, (October 2016), 55–63.
- Wang, F., Wang, C., Wang, Z., & Zhang, X. (2015). A Hybrid Algorithm of GA + Simplex Method in the WSN Localization, 2015.
- Wang, M., Cao, J., Li, J., & Dasi, S. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(2006), 305–326.
- Weile, D. S., & Michielssen, E. (1997). Genetic algorithm optimization applied to electromagnetics: a review. Antennas and Propagation, IEEE Transactions on, 45(3), 343–353
- Ye, F., Zhong, G., Cheng, J., Lu, S., & Zhang, L. (2003, May). PEAS: A robust energy conserving protocol for long-lived sensor networks. In Distributed computing systems, 2003. Proceedings. 23rd international conference on (pp. 28-37). IEEE.
- Yetgin, H., Cheung, K. T. K., & Hanzo, L. (2012). Multi-objective routing optimization using evolutionary algorithms, (APRIL), 1–6. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
- Younis, M., Akkaya, K., Eltoweissy, M., & Wadaa, A. (2004). On Handling QoS Traffic in Wireless Sensor Networks. Proceedings of the 37th Hawaii International Conference on System Sciences - 2004, 0(C), 1–10.
- Zeb, A., Islam, A. K. M. M., Baharun, S., Mansoor, N., & Katayama, Y. (2015). a Survey on Self-Organized Cluster-Based Wireless Sensor Network. Jurnal Teknologi, 76(1).
- Zhan, Z. H., Zhang, J., & Fan, Z. (2010, December). Solving the optimal coverage problem in wireless sensor networks using evolutionary computation algorithms. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 166-176). Springer Berlin Heidelberg.
- Zhang, J., Liu, K., Chen, Y., Xiong, X., Chen, L., Luo, Q., … Jiang, Y. (2014). Why (n + 1)th-hop neighbours are more important than nth-hop ones for localisation in multi-hop WSNs. Electronics Letters, 50(22), 1646–1648.
- Zhi-jun, Y. U., Jian-ming, W. E. I., & Hai-tao, L. I. U. (2009). Energy-efficient collaborative target tracking algorithm using costreference particle filtering in wireless acoustic sensor networks, 16(1), 9–15,43.
- Zhou, G., & Yi, T. (2013). The Node Arrangement Methodology of Wireless Sensor Networks for Long-Span Bridge Health Monitoring, 2013.