Effects Of High Temperature On Concentrations Of Soluble Sugars And Quercitol Of Cork Oak (Quercus Suber) Seedlings

Author(s)

Malika Rached-Kanouni , Djamel Alatou , Soulaiman Sakr ,

Download Full PDF Pages: 17-27 | Views: 383 | Downloads: 106 | DOI: 10.5281/zenodo.3384565

Volume 1 - June 2012 (06)

Abstract

The cork oak forms real cork woods which exploit an undeniable part the socio-economic plan in the Mediterranean basin. All times the multiple aggressions (overgrazing, repeated fires…), as well as the drought caused by the climate change (high temperatures) involving deteriorations and return the ecosystem to cork oak very sensitive to natural regeneration. To develop the problems and the causes affecting the reconstitution of the subericulture, the recourse to assisted regeneration and the various forestry treatments are a great need for the maintenance of its habitat. Regeneration by natural sowings remains insufficient whereas the forestations are generally lacking following none the control of the techniques of breeding of the seedlings in seedbed, and with the transplant shock due to the abrupt change in thermal conditions when moved from standard seedbed conditions to those of plantation sites often challenged with cold or heat stress. With an aim of evaluating the physiological behavior of cork oak with respect to the high temperatures, an experiment was led in conditions controlled in a culture room. Sowings of cork oak are cultivated in controlled conditions at 25°C and a 16-hr photoperiod. We have measured the content soluble sugar (sucrose, glucose, and fructose) and the content quercitol in the various organs of these sowings. Four thermal stresses (38, 40, 42 and 44°C) were applied; the results show that there is a significant reduction in the content soluble sugar. However, this species accumulates quercitol in these various organs to face the thermal stress (high temperatures).

Keywords

cork oak, high temperatures, soluble sugar, quercitol

References

  1. Aranda I., Pardos M., Puertolas J., Jimenez M.D., Pardos J.A. (2007): “Water use efficiency in cork oak (Quercus suber) is modified by interaction of water and light availabilities”. Tree physiology, 27: 671-677.
  2. Adams M.A., Richter A., Hill A.K., Colmer T.D. (2005): “Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes”. Plant, Cell and Environment, 28: 772-787.
  3. Boston R. S., Viitanen P. V., Vierling E. (1996): “Molecular chaperones and protein folding in plants”. Plant Molecular Biology, 32: 191-222.
  4. Damastin C., Galera C., Rambal S., Joffre R. (1996): “Effects of elevated carbon dioxide on leaf gas exchange and growth of cork oak (Quercus suber L.) seedlings”. Annals Forest Sciences, 53: 461-467.
  5. Flexas J., Medrano H. (2002): “Drought-inhibition of phoyosynthesis in C3 plants: stomatal and non stomatal limitations revisited”. Annals of Botany, 89: 183-189.
  6. Haldimann P., Feller U. (2004): “Inhibition of photosynthesis by high temperature in oak (Quercus suber L.) leaves grown under natural condition correlates with a reversible heat dependent reduction of the activation state of ribulose-1, 5-biphosphate carboxylase/oxygenase”. Plant, cell and environment, 27: 1169-1183.
  7. Harfouche A., Bekkar H., Belhou O., Graine M. (2003) : “Quelques résultats à l’état juvénile sur la variavilité géographique du chêne liège (Quercus suber L.) et stratégie d’amélioration génétique”. Annales de Recherche Forestière, Algérie : 1111-5254, 37-50.
  8. Ghouil H., Montpied P., Epron D., Ksontini M., Hanchi B., Dreyer E., (2003): “Thermal optima of photosynthetic function and thermostability of photochemistry in cork oak seedlings”. Tree physiology, 23: 1031-1039.
  9. Khush G. S. (2000): “Green revolution: the way forward”. Nature Reviews Genetics 2, 815-822.
  10. Larkindale J., Mishkind M., Vierling E. (2005a): “Plant responses to high temperature”. In MA Jenks, PM Hasegawa, eds, Plant Abiotic Stress. Blackwell Scientific Publications, Oxford (in press).
  11. Merchant A., Adams M.A. (2005): “Stable osmotica in Eucalyptus spathulata - responses to salt and water deficit stress”. Functional Plant Biology, 32: 797-805.
  12. Merchant A., Adams M.A., Richter A., Popp M. (2006): “A metabolite approach provides functional links among eucalypt taxonomy, physiology and evolution”. Phytochemistry, 67, 402- 408.
  13. Merouani H., Branco C., Almeida M.H., Pereira J.S. (2001): “Effects of acorn storage duration and parental tree on emergence and physiological status of Cork oak (Quercus suber L.) seedlings”. Annals Forest Sciences, 58: 543-554
  14. Najeh A. (2010) : “Croissance et productivité des forêts de chêne liège en Tunisie, vulnérabilité aux changements climatiques”. Thèse, Faculté des Sciences de Tunis, Tunisie.
  15. Orthen B., Popp M. (2000): “Cyclitols as cryoprotectants for spinach and chickpea thylakoids”. Environmental Experimental Botany, 44, 125-132.
  16. Popp M., Lied W., Bierbaum U., Gross M., Große-Schulte T., Hams S., Oldenettel J., Schüler S., Wiese J. (1997): “Cyclitols- Stable osmotica in trees, in: Rennenberg H., Eschrich W., Ziegler H”. (Eds.), Trees- Contributions to modern tree physiology, Backhuys Publishers, Leiden, The Netherlands, 257-270.
  17. Rached-Kanouni M., Alatou D., Sakr S. (2012): “Responses of cork oak seedlings to short-term exposures to low temperatures”. American Journal of Scientific Research, 59, 28- 41.
  18. Rego F.C. (2006) : “Les causes du dépérissement des chênes lièges et chênes verts”. Séminaire « Vitalité des peuplements de chênes lièges et de chênes verts”. Nouvelles des forêts méditerranéennes, n°4 Décembre, 1-12.
  19. Seigue A. (1985): “La forêt circumméditerranéenne et ses problèmes”. Maisonneuve et Larose, France : 67-81.
  20. Walther G. R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J. C., Fromentin J. M. Hoegh-Guldberg O., Bairlein F. (2002): “ Ecological responses to recent climate change”. Nature 416, 389-395.

Cite this Article: